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wise features of the solution, it is possible to study local
field fluctuations, flicker noise, and breakdown phenom-We consider the interface boundary value problem which arises

in the evaluation of electrostatic fields in composite materials con- ena [8].
sisting of dense random dispersions of cylinders in a uniform back- A variety of numerical methods can be used for direct
ground. This is a well-studied problem from the viewpoint of ho- solution of the field equation, including finite difference
mogenization and effective medium theory, but one for which

and finite element methods, but we will restrict our atten-accurate numerical simulations have been difficult to obtain. Size
tion here to methods based on potential theory. The firsteffects, in particular, have been neglected due to the expense of

solving the field equation in the presence of large numbers of close- such method is due to Lord Rayleigh, who considered the
to-touching inclusions. Such features require very fine discretiz- problem of conductivity through a regular array of disks
ations, even with the use of adaptive gridding, and cause the linear or spheres [36]. More recent work using this approach
systems which arise to be highly ill-conditioned. In this paper, we

includes [7, 11, 15, 16, 30, 31, 35, 39, 40]. More generalpresent a new integral equation method for the solution of the
integral equation formulations of the interface probleminterface problem which uses a recently developed method of im-

ages to resolve the close-to-touching interactions and the fast [22, 20] can be used to treat composites with inclusions
multipole method to compute far field interactions. Only minutes of arbitrary shape [11, 17], and even anisotropic material
of workstation time are needed to solve the field equation with properties [15]. While these integral equations result in
thousands of inclusions, allowing us to carry out large-scale statisti-

dense N 3 N linear systems, where N is the number ofcal studies of the effective conductivity of random two-phase materi-
points in the discretization of the interface, fast multipole-als at a variety of volume fractions and contrast ratios. Q 1997 Aca-

demic Press accelerated iterative schemes require only O(N) work for
the solution process [11, 15, 37]. Despite this methodologi-
cal advance, however, certain problems have been out of

1. INTRODUCTION reach. When inclusions are close-to-touching (see Figs. 2
and 6), the number of degrees of freedom required to

An important area of research in materials science con- resolve the solution grows extremely large, and the linear
cerns the determination of the effective transport and me- system which has to be solved becomes highly ill-condi-
chanical properties of composites. There are a variety of tioned. Such close encounters occur frequently in large
theoretical approaches to this problem, including the deri- dense dispersions, so that, to date, there are virtually no
vation of rigorous bounds [3, 4, 10, 13, 14, 24, 27, 41, 42], accurate large-scale numerical simulations of random me-
effective medium theory [25, 29, 44], asymptotic approxi- dia at high volume fraction. One exception is the recent
mations [2, 6, 21, 33], Monte Carlo simulations [23], and work of Helsing [16], who has developed an adaptive fast
direct solution of the governing equation [11, 15, 31, 35, multipole-accelerated iterative scheme for inclusions of
36, 39]. One advantage of the direct solution approach arbitrary shape. It is more general than the approach we
is that the desired properties are obtained with arbitrary outline below, but is significantly more expensive, since
precision, controlled only by the accuracy of the numerical we take advantage of detailed analytic features of the prob-
method. A second advantage is that, having access to point- lem at hand.

In the present paper, we combine a recently developed
1 The first author was supported by the U.S. Department of Energy method of images [7], which allows us to resolve close-to-

under Contract DEFG02-92ER14275. The second author was supported
touching interactions accurately, with the fast multipoleby the Applied Mathematical Sciences Program of the U.S. Department of
method (FMM) [9, 12, 37], which allows us to computeEnergy under Contract DEFG02-88ER25053 and by a NSF Presidential

Young Investigator Award. far field interactions efficiently. The resulting scheme can
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630 CHENG AND GREENGARD

compute the electrostatic field in unit cells with thousands function. The boundary value problem (1)–(5) can then
be shown to be equivalent to the integral equationof inclusions using only minutes of CPU time on a modern

workstation. Using our method, we have tabulated the
effective conductivity for a wide range of volume fractions

2l1nP ? (1, 0) 5 r1(P) 2 2l1 ON
j51

E
­Dj

­G
­nP

(P, Q)rj(Q) dsQ ,and conductivity ratios and compare our results with Mil-
ton’s four-point lower bound [28], small system size calcu-
lations of Sangani and Yao [40] and Monte Carlo simula- P [ ­D1 ,
tion data given by Kim and Torquato [23].

? ? ? (8)

2. THE INTERFACE PROBLEM 2lNnP ? (1, 0) 5 rM(P) 2 2lN ON
j51

E
­Dj

­G
­nP

(P, Q)rj(Q) dsQ ,

Consider a composite material consisting of M randomly
P [ ­DM ,distributed disks embedded in a uniform background V.

If each disk Di has conductivity si and the background has
conductivity s0 , then the global electrostatic potential u where lj 5 (sj 2 s0)/(sj 1 s0), j 5 1, ..., n, and nP is the
satisfies the partial differential equation, unit normal vector on the inclusion boundary at position

P. To solve (8) numerically, one can discretize rj(Q) on
each inclusion boundary in a number of ways, including

Du 5 0 in V 2 <
M

j51

Dj , (1) high-order adaptive refinement [16]. Since the inclusions
are disks, however, one can also represent rj(Q) as a Fou-
rier series, which we express in complex notation asDu 5 0 in Dj , j 5 1, ..., M, (2)

[u] 5 0 on <
N

j51

­Dj , (3)
rj(Q) 5 Re SOy

k51
Aj(k)eikuD. (9)

[s=u] 5 0 on <
N

i51

­Di , (4) Here, the multipole moments (or Fourier coefficients)
Aj(k) are unknown complex numbers and Q 5 (xj 1 a cos
u, yj 1 a sin u). Since r can be shown to be charge neutral,

where s 5 s0 in V 2 <
M
j51 Dj , s 5 sj in Dj , and [ f ] denotes no constant term is needed in the expansion. Substituting

the jump in the quantity f when passing from the interior the representation (9) into the integral equation (8) yields
of Dj to the exterior. the infinite-dimensional Rayleigh system

If V is the plane R2, and we wish to determine the
response of the material to a uniform applied field, we
impose the condition

Aj(k) 1 lj OM
m51
m?j

Oy
l51
Sl 1 k 2 1

k 2 1
D S a

zm 2 zj
Dl1k

(21)kAm(l)

=u(P) R (1, 0) as iPi R y. (5) (10)

If V is the unit square, we impose the periodic boundary 5H2lj , if k 5 1,

0, if k . 1,conditions

u(x 1 1, y) 2 u(x, y) 5 1, where zj 5 xj 1 iyj is the center of Dj viewed as a point
(6) in the complex plane. This method is capable of describingu(x, y 1 1) 2 u(x, y) 5 0.

the electrostatic field for any configuration of disks and
any prescribed conductivities. In practice, of course, the

Let us consider the infinite medium problem first (V 5 infinite system (10) must be truncated by ignoring all
R2). In order to develop an integral equation formulation, multipole moments beyond a given order. If the inclusions
we seek the solution as a single layer potential [19, 20], are reasonably well-separated, then the number of mo-

ments required is relatively small and Rayleigh’s method
gives excellent results. If the inclusions are close-to-touch-u(P) 5 P ? (1, 0) 1 ON

j51
E

­Dj

G(P, Q)rj(Q) dsQ , (7)
ing, however, the charge density r can become nearly sin-
gular, the number of degrees of freedom grows extremely
large and the linear system (10) becomes extremely ill-con-where rj(Q) is an unknown surface charge density and

G(P, Q) 5 (1/2f)logiP 2 Qi is the free-space Green’s ditioned.
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In order to overcome this problem, we have developed where
a new integral representation for the interface problem
[7], replacing the free-space Green’s function G(x, y) with

l 5
sd 2 s0

sd 1 s0
, a(1)

1 5 a2l, a(1)
2 5 a2l,a kernel Kd(x, y) which incorporates information about

nearby disks using the method of images. The construction
z1(1) 5 z1 , z2(1) 5 z2 ,of this kernel is somewhat complicated and reviewed

briefly in the next section.
and for k . 1

3. THE METHOD OF IMAGES z1(k) 5 z1 1 a2/(z2(k 2 1) 2 z1)

z2(k) 5 z2 1 a2/(z1(k 2 1) 2 z2) (14)Let us first observe that in a dilute suspension, where the
spacing between inclusions is far greater than the inclusion a(k)

1 5 a2 ? a(k21)
2 /(z1(k 2 1) 2 z2)2

radii, the global potential is well approximated by the su-
a(k)

2 5 a2 ? a(k21)
1 /(z2(k 2 1) 2 z1)2. (15)perposition of single disk solutions

The limiting image points are given by
ue(r, u) P r cos u 1 OM

j51
a2lj

cos uj

rj
, (11)

z1(y) 5
z1 1 z2

2
2 Ïad 1 d 2/4 ?

z2 2 z1

uz2 2 z1u
,

uj(r, u) P r cos u 1 lj rj cos uj , (12)
(16)

z2(y) 5
z1 1 z2

2
1 Ïad 1 d 2/4 ?

z2 2 z1

uz2 2 z1u
,

where (rj , uj) are the coordinates of the point (r, u) with
respect to the jth disk center. Using complex notation, we
can write this as where d 5 uz2 2 z1u 2 2a is the distance between the two disks.

It is important to note that Rayleigh’s method and the
method of images are both integral equation methods. For

ue(z) P Re Sz 1 OM
j51

a2lj

z 2 zj
D, the two disk problem, the former is based on seeking the

global potential u in the form of a single layer potential,
uj(z) P Re(z 1 lj(z 2 zj)),

u(P) 5 x 1 O2
j51

E
­Dj

G(P, Q)rj(Q) ds, (17)
where zj is the center of the jth disk.

As the inclusions approach one another, however, the
disks interact more and more strongly. Rather than include where G(P, Q) is the free-space Green’s function and r is
higher and higher order multipole corrections as in Ray- the charge density. In this case, the kernel G(P, Q) is
leigh’s method, the method of images [18, 26, 32, 33] pro- simple to evaluate, but r becomes very complex if the
ceeds by representing the solution in terms of a series of disks are closely spaced, requiring many Fourier modes to
dipole fields. A precise statement of this result is given in resolve. The method of images is based on the integral
the following lemma, whose proof can be found in [7]. representation

LEMMA 3.1. Let D1 and D2 be nonintersecting disks of
u(P) 5 x 1 O2

j51
E

­Dj

K(P, Q)ej(Q) ds, (18)radius a centered at z1 and z2 with identical conductivities
sd , and let the background medium have conductivity s0

(Fig. 1). Then, in the presence of a uniform applied field
where K(P, Q) incorporates the influence of all images(1, 0), the potential is given by
according to Eq. (13). Inserting the integral representation
(18) into the system (8), with ­G/­n replaced by ­K/­n,
yields the analytic solution

ue 5 Re Sz 1 Oy
k51

a(k)
1

z 2 z1(k)
1 Oy

k51

a(k)
2

z 2 z2(k)D
ej(Q) 5 2lj cos u, (19)

(13)u1 5 Re Sz 1 l(z 2 z1) 1 (1 2 l) Oy
k51

a(k)
2

z 2 z2(k)D where Q 5 (xj 1 a cos u, yj 1 a sin u). By sacrificing
simplicity of the kernel, the integral equation can be in-
verted analytically and the solution ej resolved with onlyu2 5 Re Sz 1 l(z 2 z2) 1 (1 2 l) Oy

k51

a(k)
1

z 2 z1(k)D,
one Fourier mode.
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FIG. 1. Two disks separated by a distance d.

Unfortunately, the multidisk case is not so simple. To mula for reflecting a multipole expansion of arbitrary
order.see this, suppose that we compute the image series gener-

ated by each pair of disks using Lemma 3.1, which we
THEOREM 3.1. Suppose that D1 is a disk of radius a,refer to as first-order reflections. These images must then

centered at z1 with conductivity s1 , embedded in the in-themselves be reflected into all other disks, generating
finite medium C of conductivity s0 . Suppose also that l 5second-order reflections, and so on. The total number of
(s1 2 s0)/(s1 1 s0) and that F is a multipole source centeredreflections required grows dramatically with the number
at z2 with uz1 2 z2u . a,of disks, rendering the method of images impractical for

large-scale problems.
In our earlier work [7], we decided to investigate the

F(z) 5 Op
k51

a(k)
(z 2 z2)k .

behavior of a method which is situated somewhere between
the Rayleigh approach and the construction of the exact
solution using images. An extremely effective method is Let zI 5 z1 1 a2/(z2 2 z1) and let
obtained from the integral representation

FI(z) 5 Op
k50

b(k)
(z 2 zI)k ,u(P) 5 x 1 OM

j51
E

­Dj

Kd
j(P, Q)ej(Q) ds, (20)

where b(k) (the conjugate of b(k)) satisfieswhere Kd
j(P, Q) includes the influence of all first-order

reflections generated by interactions with disks which lie
within a distance d of Dj . In practice, we choose d 5 a,
where a is the disk radius. Thus, in the absence of nearby b(k) 5 2l S a2

z2 2 z1
Dk Op

m5k
Sm

k
D S 21

z2 2 z1
Dm

a(m) (21)
disks, Kd

j(P, Q) is just the free space kernel.
There is, however, an analytical obstacle to using this

idea: the densities ej will no longer be pure dipole distribu- for k 5 0, 1, ..., p. Then the functions
tions and the formulae of Lemma 3.1 do not apply. On
the other hand, each ej is still a charge distribution on ­Dj u0 5 Re(F(z) 1 FI(z)),
whose far field can be expressed as a multipole expansion.
The following theorem, taken from [7], gives a simple for- u1 5 Re((1 2 l)F(z))
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are harmonic in C 2 (D1 < z2) and D1 , respectively, and a specified precision. These questions are answered in de-
tail in [7], and we simply summarize the results here:satisfy the interface conditions

1. In a random dispersion of disks, independent of their
u0 5 u1 on ­D1 , spacing, the error in truncating each multipole expansion

after p terms is of the order
s0

­u0

­n
5 s1

­u1

­n
on ­D1 .

Ep 5 O(0.7p). (23)
If we now expand the charge density ej on disk Dj as a

Fourier series, 2. If two disks are separated by a distance d and a
precision « is desired, then the number of reflections re-
quired is of the order O(log(d«)/2 log(1 2 Ïd )).

ej(Q) 5 Re SOp
k51

êj(k)eikuD, 3. Let D1 be a disk of radius a centered at z1 and let

a(m)(k)/(z 2 z2(m))k
where Q 5 (xj 1 a cos u, yj 1 a sin u), then the far
field induced by ej is given by the multipole expansion of

be a reflected multipole source, where z2(m) is defined indegree p,
Eq. (14). Suppose that

Fj(z) 5 Re SOp
k51

aj(k)
(z 2 zj)kD,

ua(m)(k)u ,
dk11

kl
«, (24)

where
where d 5 uz1 2 z2(m)u 2 a . 0. Then subsequent reflections
of the kth order multipole moment can be ignored with
an error bounded by «. This result provides a dynamicaj(k) 5 2

ak11êj(k)
2k

.
criterion for halting the reflection process.

The first-order reflections in the integral representation 4. FAST MULTIPOLE ACCELERATION
(20) for u are image series like (13), but where the reflec-
tions are obtained according to formula (21). Having settled the question of how to handle the nearly

Unlike the pure method of images, however, the coeffi- singular interactions among closely spaced disks by con-
cients ej(k) are now unknown, and we must solve a linear struction of the kernel Kd(P, Q), it remains to actually
system to obtain them. Imposing the flux interface condi- solve the discrete version of the integral equation (22)
tion (4), we obtain efficiently. For this we use the iterative method GMRES

[38]. For a system with M inclusions, direct calculation of
the necessary matrix–vector product requires O(M2) work,

2l1n1(P) 5 e1(P) 2 2l1 OM
j51

E
­Dj

­Kd
j

­n
(P, Q)ej(Q) ds,

not because of the image computations, but as a result of
the long-range interactions. Over the last decade, a number

P [ ­D1 , of fast algorithms have been developed which compute
long-range Coulomb interactions efficiently, and we have? ? ? (22)
chosen to incorporate one of these, namely the fast
multipole method (FMM), into our scheme. With this, the2lMn1(P) 5 eM(P) 2 2lM OM

j51
E

­Dj

­Kd
j

­n
(P, Q)ej(Q) ds,

cost of the matrix–vector product is of the order O(M).
We refer the reader to the original papers [9, 12, 37] forP [ ­DM ,
a detailed discussion of the method and to the papers [11,
16] for examples of its incorporation into the standard

where lj 5 (sj 2 s0)/(sj 1 s0), and n1(P) denotes the x- integral equation approach based on the integral equa-
component of the unit outward normal at P. The actual tion (8).
unknowns in this system are the Fourier modes êj(k), but
writing the fully discrete linear system is not particularly Remark 4.1. The only nonstandard feature of the FMM

implementation here is the following: as first-order reflec-informative. More critical are the determination of how
many Fourier modes p are required and how many reflec- tions of a given disk Dk are generated in the calculation

of near-neighbor interactions, the image multipole expan-tions in the image series need to be carried out to achieve
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sions must be included in the far-field representation of the
disk Dk in order for the representation to be self-consistent.

4.1. Periodic Boundary Conditions

In order to compute effective transport properties of
bulk materials, we need to impose the periodic boundary
conditions (6). For this, we solve the equation

2l1n1(P) 5 e1(P) 2 2l1 OM
j51

E
­Dj

­Kd
j

­n
(P, Q)ej(Q) ds,

P [ ­D1 ,

? ? ? (25)

2lMn1(P) 5 eM(P) 2 2lM OM
j51

E
­Dj

­Kd
j

­n
(P, Q)ej(Q) ds,

P [ ­DM ,

where Kd
j is the doubly periodic Green’s function, modified

to include the influence of all first-order reflections gener-
ated by interactions with disks (including periodic images) FIG. 2. A random configuration of 1024 disks in the unit cell at a
which lie within a distance d of Dj . The fast multipole disk volume fraction of 0.7.
method allows for the computation of the doubly periodic
Green’s function at essentially the same cost as the infinite
medium problem [12]. times until an equilibrium state is achieved. For a system

Once the integral equation is solved, the effective con- with 100 disks, 200 simulation sweeps can be shown to be
ductivity can be obtained from the net dipole moment D sufficient (Kim and Torquato [23]) for volume fractions in
induced by the charge distributions on each disk, as well the range [0, 0.7]. The random configurations we use in
as all of their images, from the standard formula [11, 16] our examples were generated using thousands of simula-

tion sweeps.
seff 5 s0(1 1 D).

EXAMPLE 1. A convergence study. In order to demon-
strate that our method only requires a small number of5. NUMERICAL RESULTS
degrees of freedom per disk, we consider a periodic 1024
disk configuration at volume fraction 0.7, with s0 5 1 andIn this section, we evaluate the performance of the

method described above, which has been implemented in sj 5 1000 for all inclusions (Fig. 2). With the geometry
fixed, we increase the number of Fourier modes p in theFORTRAN 77. Although we can evaluate the electric field

at any location, we will focus our attention on a single discretization of the unknown density ej on each disk and
examine the computed effective conductivity. Our resultsfunctional of the field, namely the effective conductivity.

We are primarily interested in studying the behavior of are presented in Table I, with computations carried out
on an SGI workstation using the R8000 processor. Thethe effective conductivity as we vary the volume fraction,

conductivity ratio, and system size (the number of distinct number of reflections needed in each application of the
method of images was determined dynamically from thedisks per unit cell). Except for the last example, all disk

configurations were generated by a Monte Carlo procedure condition (24). The GMRES iteration was carried out with
a tolerance of 1026.[10, 34]. For this, we begin by placing all disks at the lattice

sites of a regular square or hexagonal array. Each disk is Several observations can be made from Table I. First,
five digits of accuracy are achieved using p 5 11 terms perthen given a small tentative displacement in a random

direction. The move is accepted or rejected according to disk, suggesting that the constant term in the approxima-
tion (23) is very small. Second, the dense linear systemwhether or not the new position will cause the disk to

overlap with its neighbors. One simulation sweep consists with 11 3 1024 unknowns is solved using only 8.5 min of
CPU time. Except for Helsing’s adaptive integral equationof trying to move each disk once and the length of the

displacement is chosen so that the probability of accep- method [16], we are unaware of any existing schemes for
which this calculation is accessible without supercomputingtance is approximately 50%. This process is repeated many
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TABLE I 1. For materials with system size 256 and below, the
mean value of the effective conductivity is remarkablyConvergence Study: The Effective Conductivity of the
close to the correct value. The standard deviation however,Random Composite Depicted in Fig. 2
is quite large, so that a given sample is likely to be far

No. terms No. iter CPU time seff from the mean. In addition, the level of anisotropy can
be significant.

3 24 2.4214 7.68318
2. As expected from a Monte Carlo process, the stan-5 25 3.5413 7.69844

7 25 4.9437 7.67877 dard deviations for both the effective conductivity and the
9 25 6.6183 7.67627 measure of isotropy decrease more or less linearly with

11 25 8.5126 7.67617 the square root of the system size (the characteristic
13 25 11.067 7.67622

length scale).15 25 13.655 7.67622
17 25 17.316 7.67622 3. Because of the incorporation of the FMM, the cost

of solving the boundary value problem grows linearly with
Note. The column of Terms indicates the number of freedom (terms)

the number of disks. The largest systems considered hadused for the multipole expansion of the pseudo charge density for each
11 3 16384 unknowns and were solved using 24 GMRESdisk. The column of Iter represents number of iterations needed for

GMRES. CPU time is the CPU time in minutes spent to solve the bound- iterations in about 30 min time.
ary value problem on an SGI station with a MIPS R8000 Processor Chip. 4. Beginning at system sizes of 1024, the calculation of
And the last column is the calculated effective conductivity.

the effective conductivity seems to be accurate to more
than three digits.

Because of the last observation, we will use a systemresources. Moreover, the adaptive approach required 97
size of 1024 in our subsequent calculations, where we tabu-min of CPU time on a SUN SPARC10 workstation to
late the effective conductivity of random composites for aconverge to six digits with only 100 disks in the unit cell.
wide range of volume fraction and conductivity ratio.As mentioned earlier, it is a general purpose code for

inclusions of arbitrary shape and does not take advantage
5.1. Tables of Effective Propertiesof the image structure we have introduced.

Much of the work on determining the effective proper-EXAMPLE 2. A study of system size effects. There are
ties of random composites has focused on the calculationlong-standing questions concerning system size effects in
of bounds by asymptotic means. The pioneering work inthe study of random materials [42]. Various suggestions
this area is that of Hashin and Shtrikman [14], who estab-have been made in the literature about how many disks
lished upper and lower bounds for the effective conductiv-are required to simulate a truly random material [40, 6],
ity of an isotropic composite. With no additional informa-but we are not aware of any systematic investigation of

the issue, since accurate calculations in large systems have
been inaccessible. We attempt to address some of these

TABLE IIissues here by brute force: that is, by direct simulation over
many instantiations of 16, 64, 256, 1024, 4096, and 16384 System Size Effects Study: The Effective Conductivity of the
disk ensembles. Random Composites with Disk Volume Fraction at 0.5 and Disk

Conductivity at sd 5 1000.0We will focus on the statistical properties of the effective
conductivity of a random composite at volume fraction 0.5

Size CPU/Iter Mean(seff) 6 S.D. Isotropyat a contrast ratio of sd/s0 5 1000/1. Table II shows our
results. The first column indicates the number of disks 16 0.094 3.5587 6 0.263 20.002 6 0.190
per unit cell, the second column indicates the CPU time 64 0.329 3.5671 6 0.145 0.006 6 0.097

256 1.382 3.5607 6 0.064 20.001 6 0.052required for a single iteration in the solution of a boundary
1024 5.477 3.5525 6 0.033 0.000 6 0.027value problem at the corresponding system size, and the
4096 20.60 3.5519 6 0.016 0.000 6 0.012third column gives the mean value and standard deviation

16384 79.45 3.5520 6 0.010 0.000 6 0.009
of the effective conductivity averaged over 200 sample
configurations for each system size. The last column pro- Note. The conductivity of the matrix is s0 5 1.0. The first column

indicates the system size (number of disks in unit cell) of the composites.vides an indicator of how isotropic the material is; more
The second column is the CPU time (in seconds) spent in each iterationprecisely, it is the flux in the y-direction with an electric
of GMRES to solve the boundary value problem. The third column isfield of unit strength applied in the x-direction. (In the
the mean value of effective conductivity of the specified random compos-

random limit, the material is perfectly isotropic and the ites and the standard deviation calculated from the sample. And the
flux should be zero.) last column shows our measurements for the isotropy property of the

random composites.Several facts emerge from examining the data.
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TABLE IIItion about the material, these bounds are optimal, but
improvements can be made with additional information The Effective Conductivity of Random Composites with
about the microstructure [3, 10, 27, 43]. Simulation meth- Disk to Matrix Conductivity Ratio sd/s0 5 10.0
ods have also been used to estimate the effective conductiv-

Volume Our Four-point Brownianity, both by Monte Carlo methods [23] and direct solution
fraction calculation lower bound simulationof the interface problem using small system sizes [40].

In this section, we use our method to tabulate the effec- 0.1 1.182 6 0.001 1.182 —
tive conductivity for composites consisting of random dis- 0.2 1.410 6 0.002 1.408 1.41

0.3 1.698 6 0.004 1.690 —persions of (nonoverlapping) disks with about three digits
0.4 2.067 6 0.006 2.049 2.07of accuracy at volume fractions between 0.1 and 0.7 and
0.5 2.546 6 0.009 2.512 —at conductivity ratios sd/s0 5 10.0, 1000.0, and 108.
0.6 3.186 6 0.011 3.123 3.14

For the sake of comparison, we include the simulation 0.7 4.020 6 0.017 3.927 —
results of Kim and Torquato [23] and Sangani and Yao
[40] whenever available. We also provide the fourth-order
Milton lower bound [28] for random materials as an ap-

data of Torquato and Lado [43] for f , 0.5 and that ofproximation to the effective conductivity,
Greengard and Helsing [10] for f $ 0.5. In principle, higher
order bounds are possible, but their evaluation is not sig-

sL 5 s0 Fsd 1 (1 2 f )s0 1 fsd 2 (1 2 f )z2l(sd 2 s0)
s0 1 fs0 1 (1 2 f )sd 2 (1 2 f )z2l(sd 2 s0)

G, nificantly less expensive than our current approach for
calculating the effective property itself. In the figures, we

(26) also plot the effective conductivity for the square array of
disks [35].

Table III and Fig. 3 concern the case sd/s0 5 10.0. Atwhere l 5 (sd 2 s0)/(sd 1 s0) and f is the disk volume
fraction. This bound depends on Milton’s ‘‘structural pa- such low contrast, all results are in close agreement and

our data simply verifies the accuracy of the previous ap-rameter’’ z2 , which is obtained numerically. We use the

FIG. 3. Graphical display of the effective conductivity of random composites with disk to matrix conductivity ratio sd/s0 5 10.0.
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TABLE IV TABLE V

The Effective Conductivity of Random Composites with The Effective Conductivity of Random Composites with
Disk to Matrix Conductivity Ratio sd/s0 5 108Disk to Matrix Conductivity Ratio sd/s0 5 1000.0

Volume Our Four-point Volume Our Four-point Brownian Sangani
fraction calculation lower bound simulation & Yaofraction calculation lower bound

0.1 1.231 6 0.001 1.229 0.1 1.231 6 0.001 1.230 1.23 1.23 6 0.002
0.2 1.543 6 0.004 1.534 — —0.2 1.541 6 0.003 1.532

0.3 1.974 6 0.010 1.941 0.3 1.977 6 0.009 1.944 1.97 1.97 6 0.03
0.4 2.607 6 0.018 2.517 — —0.4 2.600 6 0.019 2.511

0.5 3.553 6 0.033 3.338 0.5 3.571 6 0.034 3.350 3.59 3.4 6 0.6
0.6 5.164 6 0.064 4.632 — —0.6 5.114 6 0.060 4.609

0.7 7.777 6 0.117 6.636 0.7 7.834 6 0.119 6.684 8.29 7.8 6 0.3

proximations. For sd/s0 5 1000.0, the results are shown dictions in most cases, except that the effective conductivity
was overestimated at f 5 0.7.in Table IV and Fig. 4, where significant differences can

be found among the various results at high volume frac- An interesting phenomenon observed from the figures
is that the results for square arrays consistently cross thetions. At the highest contrast ratio, sd/s0 5 108, our data

is presented alongside previous results in Table V and Fig. four-point lower bound and appear likely to cross our
results for random arrays at high volume fraction. Such a5. It is interesting to note that the results of Sangani and

Yao [40] are remarkably accurate, except for the case f 5 phenomenon has been reported earlier for the z2 structural
parameter [10]. It is probably due to the fact that, at high0.5, where the reason for the discrepancy is unclear. The

simulations of Kim and Torquato [23] also gave good pre- volume fractions, the random array can sample configura-

FIG. 4. Graphical display of the effective conductivity of random composites with disk to matrix conductivity ratio sd/s0 5 1000.0.
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FIG. 5. Graphical display of the effective conductivity of random composites with disk to matrix conductivity ratio sd/s0 5 108.

tions closer to hexagonal close packing in structure, for
which the effective conductivity is known to be lower.

5.2. Composites with Clustered Inclusions

To further test the capability of our method, we consider
an inhomogeneous composite material, in which the inclu-
sions are clustered (Fig. 6). Such structures can often be
seen in real composites [41], and are well known to have
significant effects on the transport and mechanical proper-
ties of the material under consideration, especially when
clusters lead to a percolation path. Here, we consider a
free-space problem in which the 1024 disks shown in Fig.
6 are embedded in a uniform background. The volume
fraction of disks within the unit cell is 0.59 and the disk
conductivity ratio is set to sd/s0 5 1000/1. To see the
effect on the induced dipole moment, we carried out similar
calculations for a square array of disks and for a random
configuration with the same volume fraction. Our results
are reported in Table VI. Note that the clustered composite
requires considerably more computational effort, but still
less than 20 min of CPU time. Note also that the dipole
response of the random array is about 9% stronger than
its square array counterpart and that the clustered array

FIG. 6. An example of composite with clustered inclusions.has a dipole response 13% greater than the random array.
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